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How big is «BIG»?

«BIG» for Numismatists «BIG» for Computer Scientists

. . . . 



Every day
we have … 150,000,000 VISA transactions

735,000,000 comments
posted on Facebook

4,000+ Petabytes
(= 4E18 Bytes) of Internet traffic



… whereas … Portable Antiquity Scheme:
590,000 records

Coin Hoards of the Roman 
Empire project: 11,000 records

My personal archive
of coin finds: 9,500 records



DATA ALGORITHMS INFO

The challenges of Data Availability and Data Processing

Are my data complete, reliable and 
available in the proper format?

Do I really know the right algorithms
to be applied to my data set?



• Synthetic 
descriptions
of the coins

• Usually lack of 
archaeological details

• Attributions not 
always made by 
numismatists

• Obsolete/misleading 
bibliography

The challenges of Data Availability and Data Processing

E. TAHEN, Lettre critique à Mons. F. Schweitzer touchant la 
première décade, in Mittheilungen aus dem Gebiete der 
Numismatik und Archaeologie. Notizie peregrine di Numismatica
e d'Archeologia, II, Trieste 1854, pp. 81-96 (82-84)

Coins in the name of Berengar king of Italy, usually both 
attributed to Berengar I (888-924), mint of Milan.
Attribution recently changed to:
a) Berengar I (888-924), mint of Verona (or Venice?)
b) Berengar II (950-961), mint of Venice

a)

b)



Studying
a coin find:
a budgetary 
perspective

general assumptions: 
- 8 working hours per day
- 250 working days per year
- 300 €/MWD
MWD: man working days

case 1: 15 min. per entry

• 4 entries per hour

• 32 entries per day

• 8,000 entries per year

1,000 entries = 31.25 MWD

↓ ↓ ↓

1,000 entries = 9,375 €

case 2: 30 min. per entry

• 2 entries per hour

• 16 entries per day

• 4,000 entries per year

1,000 entries = 62.5 MWD

↓ ↓ ↓

1,000 entries = 18,750 €

case 3: 60 min. per entry

• 1 entries per hour

• 8 entries per day

• 2,000 entries per year

1,000 entries = 125 MWD

↓ ↓ ↓

1,000 entries = 37,500 €

Completeness and accuracy have a cost
The number of entries is affected by the time dedicated to each entry, 

whatever they are high level descriptions of hoards or single coins



What if I want
to publish the
Reka Devnia (BG)
hoard?

general assumptions: 
- 8 working hours per day
- 250 working days per year
- 300 €/MWD
MWD: man working days
MWY: man working years

81,096 republican and imperial roman coins 

found in 1929 on the site of ancient 

Marcianopolis (Moesia Inferior), preliminarily 

publicated by N. Mouchmov in 1934, after a 

further 20,000+ coins had been dispersed. 

The total number of coins therefore 

exceeds 101,096 specimen

(source: http://chre.ashmus.ox.ac.uk/hoard/3406)

Time to count the coins ≈ 2.82 MWD

1 count per second

lack of errors

Time to record the coins into a database

(full description and pictures)

≈ 1,689.5 MWD (≈ 6.76 MWY)

10 minutes per coin

Number of pages needed to publish

the coins (full description and pictures)

≈ 2,704 pages and 4,055 plates

description: 30 coins per page

pictures: 20 coins per plate



Let’s now 
talk about 
Statistics…



DESCRIPTIVE STATISTICS is the process of using and analyzing a 
summary statistic that quantitatively describes or summarizes 

features of a collection of data

STATISTICAL INFERENCE is the process of using data analysis to 
deduce properties of an underlying probability distribution,

inferring properties of a population from a data set
sampled from a larger population

How many STATISTICS?



Descriptive 
Statistics

MEASURES

Arithmetic mean
Mode

Median
Std. deviation

TABLES

Cross tabulation
Contingency tables

CHARTS

Column/Bar charts
Line charts

Scatter plots
Radars

MAPS

Geographic maps
GIS databases

DESCRIPTIVE
STATISTICS



Statistical 
Inference

Random Sampling



“
Unfortunately, hoard data are not the ideal

“experimental” data treated in statistics texts.

Numismatic analyses are often complicated by 

small sample sizes and non-randomness, 

which may invalidate statistical conclusions.

(Warren W. ESTY, Statistical analysis of hoard data in ancient numismatics)



The limits of 
Statistics 
applied to the 
analysis of coin 
hoards

▪ small sample sizes
The larger the observed sample is, the better the quality of an 

estimate is

▪ non-randomness
A hoard is not necessarily the result of a random sampling of the 

coins circulating in a region, but rather of a selection of them

From a statistical perspective, a hoard can be hardly 
considered a reliable estimator of a larger population

(e.g. mint production, coin circulation)



We can model a hoard of N coins as an array of independent 

random variables

ℋ = (𝑋1, 𝑋2, … , 𝑋𝑁)

Each random variable 𝑋𝑖 is a single coin/object having specific 

qualitative (e.g., mint, types, inscriptions) and quantitative (e.g., 

module, weight, axis orientation) properties.

Not all the coins have comparable properties 
(e.g., a golden florin was minted with a theoretical weight

different from that of a bullion penny)



Not all the random variables
are identically distributed

Modelling a 
hoard as an 
array of
independent 
random variables



The problem
of sampling

Working with M<N coins randomly extracted from the hoard implies 

that the subset ℋ′of coins

ℋ′ = (𝑋1
′ , 𝑋2

′ , … , 𝑋𝑀
′ )

where ℋ′ ⊆ ℋ

- is considering coins all with comparable properties

(i.e., identically distributed random variables);

- is informative enough (i.e., M is «big» enough to give validity to the 

theorems of Statistics and accuracy to the used estimators).

The previous assumptions drastically reduce 
the application scenarios of Statistical 

Inference to the study of «big» coin hoards



The case of the 
Reka Devnia (BG) 
hoard

Assumptions of some 
basic theorems of 
Statistics (e.g., the Central 
Limit Theorem)
are hardly applicable for 
the large majority
of the subsets (i.e., types)

▪Julia Maesa (Augusta), Denarius, Rome (218/22 CE), RIC 268: 547 pieces

▪Faustina I (Diva), Denarius, Rome (141 CE), RIC 351a: 498 pieces

▪Julia Mamaea (Augusta), Denarius, Rome (225/35 CE), RIC 343: 467 pieces

▪Maximinus I Thrax (Augustus), Denarius, Rome (235/6 CE), RIC 14: 418 pieces

▪Faustina I (Diva), Denarius, Rome (141 CE), RIC 344a: 390 pieces

▪Marcus Aurelius (Caesar), Denarius, Rome (145/60 CE), RIC 429a: 338 pieces

▪Julia Mamaea (Augusta), Denarius, Rome (225/35 CE), RIC 360: 319 pieces

▪Julia Maesa (Augusta), Denarius, Rome (218/22 CE), RIC 271 or 272: 316 pieces

▪Faustina II (Augusta), Denarius, Rome (161/75 CE), RIC 677: 311 pieces

▪Faustina I (Diva), Denarius, Rome (141 CE), RIC 362: 309 pieces

▪Julia Domna (Augusta), Denarius, Rome (196/211 CE), RIC 574: 300 pieces

➢ 28 more types with 200 to 299 pieces each

➢ 146 more types with 100 to 199 pieces each

➢ 1,322 more types with 10 to 99 pieces each

➢ 1,156 more types with 2 to 9 pieces each

➢ 689 more types with 1 piece each only

(source: http://chre.ashmus.ox.ac.uk/hoard/3406)



The multinomial 
distribution

Evaluation of
qualitative information
(e.g., distribution analysis 
of types, mints, metal)

𝑓 𝑥1, … , 𝑥𝑚; 𝑛, 𝑝1, … , 𝑝𝑚 = P(𝑋1 = 𝑥1, …, 𝑋𝑚 = 𝑥𝑚) =

=

𝑛!

𝑥1! … 𝑥𝑚!
∙ 𝑝1

𝑥1∙ ⋯ ∙ 𝑝𝑚
𝑥𝑚 , when 

𝑖=1

𝑚

𝑥1 = 𝑛

0, otherwise

▪ Multinomial distribution: 𝒏 mutually independent trials,

each with 𝒎 possible outcomes

▪ Binominal distribution: 𝒏 mutually independent trials,

each with 𝟐 possible outcomes

▪ Bernoulli distribution: 𝟏 trial, with 𝟐 possible outcomes



The binomial 
distribution
ℬ𝑖𝑛 𝑛, 𝑝

Evaluation of
qualitative information
(e.g., distribution analysis 
of types, mints, metal)

𝐵𝑖𝑛 𝑛, 𝑝 : 𝑓 𝑘, 𝑛, 𝑝 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 for 𝑘 = 0,1,2, …𝑛

For 𝑛 = 1 the binomial distribution is a Bernoulli distribution

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 : 𝑓 𝑘, 𝑝 = 𝑝𝑘 1 − 𝑝 1−𝑘 for 𝑘 ∈ 0,1

 

    

    

    

    

   

    

    

    

    

   

                

 
  
 
 
  
  
  
  
 
  
  
 
   

 

 

                 

                 

                 

𝐵𝑖 20,0.7

𝐵𝑖 20,0.5

𝐵𝑖 40,0.5
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The normal 
(gaussian) 
distribution
𝑁 𝜇, 𝜎2

Evaluation of
quantitative information
(e.g., weight, diameter)

𝑁 𝜇, 𝜎2 : 𝑓 𝑥 =
1

2𝜋 ∙ 𝜎
∙ 𝑒

−
𝑥−𝜇
𝜎

2
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The need to 
have a large 
sample size

Weak law of large numbers

Suppose 𝑋1, 𝑋2, … is a sequence of independent and identically 

distributed random variables with finite expected value 𝔼 𝑋𝑖 = µ . 

The sample average

ത𝑋𝑛 =
1

𝑛


𝑖=1

𝑛

𝑋𝑖 =
1

𝑛
𝑋1 +⋯+ 𝑋𝑛

converges to µ as 𝑛 → ∞.



The need to 
have a large 
sample size

Weak law of large numbers (case with 𝜎2 < ∞)

Suppose 𝑋1, 𝑋2, … is a sequence of independent and identically 

distributed random variables with finite expected value 𝔼 𝑋𝑖 = µ

and finite variance var 𝑋𝑖 = 𝜎2. From the Chebyshev's inequality it 

follows that

𝑃 ത𝑋𝑛 − 𝜇 < 𝜀 ≥ 1 −
𝜎2

𝑛𝜀2

where 𝑛 > 0 and 𝜀 > 0.



The need to 
have a large 
sample size

Example

Suppose a distribution with finite average value µ unknown and 

variance 2 = 1.

How big should be the sample to have a probability at least of 95% to 

have the sample average ത𝑋𝑛 distant less than 0.5 from the average

value µ?

With 2 = 1,  = 0.5 and 𝑃 ത𝑋𝑛 − 𝜇 < 𝜀 ≥ 0.95, it follows that 

1 −
𝜎2

𝑛𝜀2
≥ 0.95 ⇒ 𝒏 ≥ 𝟖𝟎



Central Limit Theorem

Suppose 𝑋1, 𝑋2, … is a sequence of independent and identically 

distributed random variables with finite expected value 𝔼 𝑋𝑖 = µ and 

finite variance var 𝑋𝑖 = 𝜎2. The random variable

𝑍𝑛 =
ത𝑋𝑛 − 𝔼 ത𝑋𝑛

var ത𝑋𝑛
=

ത𝑋𝑛 − µ

Τ𝜎 𝑛

converges in distribution to a normal distribution 𝑁 0,1 as 𝑛 → ∞.

The need to 
have a large 
sample size



Estimation
A set of random samples 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 extracted from a population with 

probability distribution function 𝒇 ∙; 𝜽 known except for the parameter 

𝜽 = 𝜽𝟏, 𝜽𝟐, … , 𝜽𝒌 is used to determine an estimator 𝜽 for 𝜽.

POINT ESTIMATION: calculation of a single 
value which is to serve as a «best estimate»
of an unknown parameter 𝜽𝒊 (1 ≤ 𝑖 ≤ 𝑘)

INTERVAL ESTIMATION: calculation of an 
interval of plausible values of an unknown 
parameter 𝜽𝒊 (1 ≤ 𝑖 ≤ 𝑘)



Point estimators 
for a Bernoulli 
distribution
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 :
an example

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 : 𝑓 𝑘, 𝑝 = 𝑝𝑘 1 − 𝑝 1−𝑘 for 𝑘 ∈ 0,1

In this case  𝜃 = 𝜃1 = 𝑝.

The estimator 𝜃 = 𝜃1 = Ƹ𝑝 is a function of 𝑋1, 𝑋2, … , 𝑋𝑛.

Ƹ𝑝 =
1

𝑛


𝑖=1

𝑛

𝑋𝑖 = ത𝑋𝑛



Point estimators 
for a normal 
distribution
𝑁 𝜇, 𝜎2 :
an example

𝑁 𝜇, 𝜎2 : 𝑓 𝑥 =
1

2𝜋 ∙ 𝜎
∙ 𝑒

−
𝑥−𝜇
𝜎

2

In this case  𝜃 = 𝜃1, 𝜃2 = 𝜇, 𝜎2 .

The estimator 𝜃 = 𝜃1, 𝜃2 = Ƹ𝜇, ො𝜎2 is a function of 𝑋1, 𝑋2, … , 𝑋𝑛.

ො𝜇 =
1

𝑛


𝑖=1

𝑛

𝑋𝑖 = ത𝑋𝑛

ො𝜎2 =
1

𝑛


𝑖=1

𝑛

𝑋𝑖 − ො𝜇 2 =
1

𝑛


𝑖=1

𝑛

𝑋𝑖 − ത𝑋𝑛
2



Interval 
estimators
for a binomial 
distribution
𝐵𝑖𝑛 𝑛, 𝑝 :
an example

Under the assumptions that

▪ ෝ𝒑 and 𝟏 − ෝ𝒑 are not close either to 0, or to 1

▪ 𝒏 𝟏 − ෝ𝒑 > 𝟓 and 𝒏ෝ𝒑 > 𝟓

the interval of confidence for 𝑝 is

𝑝 ~ ത𝑋𝑛 − 𝑧
1−

𝑟
2
∙

ത𝑋𝑛 1 − ത𝑋𝑛
𝑛

; ത𝑋𝑛 + 𝑧
1−

𝑟
2
∙

ത𝑋𝑛 1 − ത𝑋𝑛
𝑛

where:

𝑛 is the number of samples
ത𝑋𝑛 is the sample average over 𝑛 samples

𝑧𝑏is the 𝑏-th quantile of the normal distribution 𝑁 0,1



Interval 
estimators
for a normal 
distribution
𝑁 𝜇, 𝜎2 :
an example

Since the variance of the sample average is not corresponding to 𝜎2

( see Central limit theorem), we define a sample variance as

𝑺𝑛
2 =

1

𝑛 − 1


𝑖=1

𝑛

𝑋𝑖 − ത𝑋𝑛
2

for which

𝔼 𝑺𝑛
2 = 𝜎2



Interval 
estimators
for a normal 
distribution
𝑁 𝜇, 𝜎2 :
an example

To estimate the average value µ, it worth noting that the random 

variable T

𝑇 =
ത𝑋𝑛 − 𝜇

Τ𝑺𝑛 𝑛
~ 𝑡𝑛−1

i.e., it follows the Student’s t-distribution with 𝑛 − 1 degrees of 

freedom.



Interval 
estimators
for a normal 
distribution
𝑁 𝜇, 𝜎2 :
an example

To estimate the average value 𝜎2, it worth noting that the random 

variable V

𝑉 =
𝑛 − 1 𝑺𝑛

2

𝜎
~ 𝜒𝑛−1

2

i.e., it follows the chi-squared 𝝌𝟐 distribution with 𝑛 − 1 degrees of 

freedom.



Interval 
estimators
for a normal 
distribution
𝑁 𝜇, 𝜎2 :
an example

The intervals of confidence for µ and 𝜎2 are

𝜇~ ത𝑋𝑛 − 𝑡
𝑛−1,1−

𝑟
2
∙
𝑺𝑛

𝑛
; ത𝑋𝑛 + 𝑡

𝑛−1,1−
𝑟
2
∙
𝑺𝑛

𝑛

𝜎2~ 𝑛 − 1
𝑺𝑛
2

𝑣
𝑛−1,1−

𝑟
2

; 𝑛 − 1
𝑺𝑛
2

𝑣
𝑛−1,

𝑟
2

where:

𝑛 is the number of samples
ത𝑋𝑛 is the sample average over 𝑛 samples

𝑺𝑛
2 is the sample variance over 𝑛 samples

𝑡𝑎,𝑏is the 𝑏-th quantile of the t distribution with 𝑎 degrees of freedom

𝑣𝑎,𝑏is the 𝑏-th quantile of the 𝜒2 distribution with 𝑎 degrees of freedom



𝝁

𝝈𝟐

ത𝑋𝑛 − 𝑡
𝑛−1,1−

𝑟
2
∙
𝑺𝑛

𝑛
ത𝑋𝑛 + 𝑡

𝑛−1,1−
𝑟
2
∙
𝑺𝑛

𝑛

𝑛 − 1
𝑺𝑛
2

𝑣
𝑛−1,1−

𝑟
2

𝑛 − 1
𝑺𝑛
2

𝑣
𝑛−1,

𝑟
2

ത𝑋𝑛

𝑺𝑛
2

𝑃 𝑛 − 1
𝑺𝑛
2

𝑣
𝑛−1,1−

𝑟
2

< 𝜎2 < 𝑛 − 1
𝑺𝑛
2

𝑣
𝑛−1,

𝑟
2

= 1 − 𝑟𝑃 ത𝑋𝑛 − 𝑡
𝑛−1,1−

𝑟
2
∙
𝑺𝑛

𝑛
< 𝜇 < ത𝑋𝑛 + 𝑡

𝑛−1,1−
𝑟
2
∙
𝑺𝑛

𝑛
= 1 − 𝑟

𝑁 ത𝑋𝑛, 𝑺𝑛
2



Use case: 
estimation of a 
QUALITATIVE
property

Let’s have a subset of M coins ℋ′ = (𝑋1
′ , 𝑋2

′ , … , 𝑋𝑀
′ ) randomly 

extracted from the hoard of N coins ℋ = 𝑋1, 𝑋2, … , 𝑋𝑁 , with M<N.

To estimate the frequency occurrence e.g. of specific mints, instead of 

using a multinomial distribution we might apply the binomial 

distribution ℬ𝑖𝑛 𝑁, 𝑝𝑗 for each possible mint 𝑗 (or – better – for the 

most represented mints)

▪ 𝑝𝑗= percentage of coins from the mint 𝑗 in the whole hoard ℋ

(i.e, probability of extracting a coin of the mint 𝑗 from the N coins 

of the hoard ℋ);

▪ Ƹ𝑝𝑗,𝑀= percentage of coins from the mint 𝑗 in the data subset ℋ′.

𝑝𝑗,𝑁 ≅ Ƹ𝑝𝑗,𝑀 =
1

𝑁
σ𝑖=1
𝑁 𝑋𝑖

′ (± delta from the interval of confidence)



Use case: 
estimation of a 
QUALITATIVE
property

example: estimation of 
mint distribution

Need to group the poorly 
represented mints to 
satisfy the assumptions 
for interval estimation

Example (M = 100 coins, out of N = 100,000 coins)

41 coins from mint A  Ƹ𝑝𝐴,100 = 0.41

23 coins from mint B  Ƹ𝑝𝐵,100 = 0.23

14 coins from mint C  Ƹ𝑝𝐶,100 = 0.14

12 coins from mint D  Ƹ𝑝𝐷,100 = 0.12

10 coins from other mints  Ƹ𝑝𝑜𝑡ℎ,100 = 0.10

This means that in the hoard ℋ we should expect

▪ 41,000 ± 9,640 coins from mint A with a probability of 95%

▪ 23,000 ± 8,248 coins from mint B with a probability of 95%

▪ 14,000 ± 6,801 coins from mint C with a probability of 95%

▪ 12,000 ± 6,369 coins from mint D with a probability of 95%

▪ 10,000 ± 5,880 coins from other mints with a probability of 95%



Use case: 
estimation of a 
QUALITATIVE
property

In other words:

▪ 41,000 ± 24% coins from mint A with a probability of 95%

▪ 23,000 ± 36% coins from mint B with a probability of 95%

▪ 14,000 ± 49% coins from mint C with a probability of 95%

▪ 12,000 ± 53% coins from mint D with a probability of 95%

▪ 10,000 ± 59% coins from other mints with a probability of 95%

The probability of having exactly 41,000 + 23,000 + 14,000 + 12,000 + 

10,000 coins is less than 10E-11 (1 out of 100,000,000,000; 

approximation via normal distribution).

The probability of having a distribution of the mints in the whole 
𝓗 hoard matching the intervals of confidence for the five mints is 

approximately around 77 %.



Use case:
estimation of a 
QUANTITATIVE
property

example: DUCATONI of 
Vincenzo I Gonzaga
(1587-1612), mint of 
Casale Monferrato

theorethical weight = 31.94 grams
remedium in pondere = 0.25 grams

Number of samples: 10

sample average: 31.316000 grams
sample variance: 0.192893 grams2

t-Student quantile (95%): 2.262157

chi-squared quantiles (95%): 19.022768 / 2.700389

estimated weight (95%): 31.00 / 31.63

estimated variance (95%): 0.09 / 0.64

Number of samples: 20

sample average: 30.939500 grams
sample variance: 1.778489 grams2

t-Student quantile (95%): 2.093024

chi-squared quantiles (95%): 32.852327 / 8.906516

estimated weight (95%): 30.32 / 31.56

estimated variance (95%): 1.03 / 3.79

Number of samples: 100

sample average: 30.745521 grams
sample variance: 2.757318 grams2

t-Student quantile (95%): 1.984217

chi-squared quantiles (95%): 128.421989 / 73.361080

estimated weight (95%): 30.42 / 31.08

estimated variance (95%): 2.13 / 3.72

Number of samples: 50

sample average: 30.855800 grams
sample variance: 2.389776 grams2

t-Student quantile (95%): 2.009575

chi-squared quantiles (95%): 70.222414 / 31.554916

estimated weight (95%): 30.42 / 31.30

estimated variance (95%): 1.67 / 3.71



“trabuchamento” (?)

≈ 48.2 % of samples (*) weighting
between 31.75 and 32.25 grams

≈ 69.2 % of samples (*) weighting
between 31.5 and 32.5 grams

6σ

μ

28.8 % of samples (*)

Use case:
estimation of a 
quantitative 
property

μ ≈ theorethical weight
3σ ≈ remedium in pondere

(*) analysis conducted on 1,200+ 
DUCATONI from Northern Italy

coin clipping & consumption

Such a large amount of samples weighting less than μ – 3σ grams
leads the statistic not to pass statistical hypothesis tests (e.g., 𝝌𝟐 test) 
if the data were used to estimate the theoretical weight.



… and now 
about 
Computer 
Science



The amount of data to be managed in coin find recording is «small» from the IT point of view,
so there are convenient solutions for DATA STORING AND PROCESSING that are also accessible

in home computing and/or small academic networks

“Small” data vs. “big” data: different IT architecture paradigms

. . . . 

• Local file systems
• Relational databases (RDBMS)
• Local storage solutions (2.5” HDD)
• Structured data

• Distributed file systems
• NoSQL databases
• Distributed data store
• Unstructured / semi-structured data



Data storing and processing

Relational databases RDBMS (e.g. Microsoft 
Access, MySQL, PostgreSQL) allow the storing 
of a data set much larger than that 
determined by all known coin finds.

Spreadsheets (e.g. Microsoft Excel) offer a 
complete set of statistical functions.
The enhanced capacity in terms of rows and 
columns allows to easily manage millions of 
data – both quantitative and qualitative – in a 
tabular form.



Data storing and processing

Data analytics platforms (e.g. Qlik) offers 
self-service visualization, guided and 
embedded analytics and reporting capabilities.

They usually provide a dynamic, highly 
customizable dashboard connected to a data 
set (e.g., ODBC database, OLE DB database , 
local or network file folders, web URLs), with 
plenty of pre-defined templates.



Data storing and processing

Dozens of free APIs, plugins and widgets are 
available on the Internet for spatial 
visualization and data processing.

Use case: Leaflet (one of the most popular open-
source JavaScript libraries for interactive maps) 
combined with Shiny (web framework for R, a 
language and environment for statistical computing 
and graphics applications) to achieve enhanced 
spatial visualization of the data set.

(source: https://rstudio.github.io/leaflet/)



Looking for 
smart ways to 
digitalize data

Simultaneous data 
acquisition based on the 
Arduino UNO board:
a) speech recognition 

data entry
b) weight sensor
c) tethered shooting
d) open source APIs

Arduino UNO
+

ad hoc code

a)

b)

c)

d)



Looking for smart ways to digitalize data
A “wiki” approach to the recording of coin finds

https://www.sibrium.org/CoinFinds/

https://www.sibrium.org/CoinFinds/
https://www.sibrium.org/CoinFinds/


Local db 1

Local db 2

Local db N

. . . .

Data reuse
and data 
convergence

Integrating existing 
RDBMSs into a 
“master” RDBMS

master db

• Database schema
• Need to develop a parser for each 

RDBMS, to adapt the local schema to 
a reference schema



Local db 1

Local db 2

Local db N

. . . .

Data reuse
and data 
convergence

Integrating existing 
RDBMSs into a
noSQL database

• Schemaless data structure
(“key-value pairs” model)

• No need to develop local parsers
• Queries on JavaScript



Local db 1

Local db 2

. . . .

Data reuse
and data 
convergence

Linked open data
and semantic web

Local db N

• Dereferenced URIs
• Standardization under the care of 

World Wide Web Consortium (W3C)
• Queries on e.g. SPARQL



The risks from IT Obsolescence and Short Term Projects

Computer Science is evolving 
at the speed of light,
IT solutions may become 
obsolete in a flash.

Projects of digitalization and 
data recording can shut down
due to lack of funds or people 
leaving.

Need to have OPEN DATA, in non-proprietary file format
(e.g. CSV, XML, JSON), accessible in a universally defined location

Congress 
«Monete in rete» (2003)

BBC Domesday Project (1986)



JSON



XML



RDF



A (hopefully) great future… but not for us?

Not all the mature technologies of daily
use will find an application in Numismatics in a 
short term (no return on investments):

▪ PATTERN RECOGNITION

( automatic identification of a picture)

▪ ARTIFICIAL NEURAL NETWORKS

( automatic production of information from 
structured data)

▪ MACHINE LEARNING

( learning by use cases, problem solving)

▪ QUESTION ANSWERING

( natural language queries on data sets)



Let’s move onto 
the conclusions…



DATA ALGORITHMS INFO

The challenges of Data Availability and Data Processing

Are my data complete, reliable and 
available in the proper format?

Do I really know the right algorithms
to be applied to my data set?



«Are my data complete, reliable and available in the proper format?»

There are so many tools for processing data!

The real challenge is to have an OPEN data set 

that is as COMPLETE and RELIABLE as possible.

Data should be in a digital and – preferably –

indexed format (e.g., schema database, key-value 

pairs, ontology).

DATA



«Do I really know the right algorithms to be applied to my data set?»

Knowing what to do is fundamental! Data processing is not just 

Statistics or Computer Science, it is above all great sensitivity 

dictated by experience and intuition.

Descriptive 
Statistics

Statistical 
Inference

Statistical 
Modelling

Multivariate 
Statistics

Spatial
Analysis

Whatever your imagination can invent!

ALGORITHMS



“
There are

three kinds of lies:
lies, damned lies,

and statistics

(Benjamin DISRAELI, attr.)



WORK SMARTER,
NOT HARDER!



It all comes to an end…

If you have any questions about this 

document, please don’t hesitate to contact 

me at:

▪ https://www.sibrium.org/

▪ mail@sibrium.org


